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Vibration-based damage detection is based on the fact that vibration characteristics such as natural frequencies and mode shapes of the structures are changed when the damage occurs. In this paper, co-operative co-evolutionary genetic algorithm (CCGA) is proposed to solve the vibration-based damage detection in truss structures. The minimized objective function is a numerical indicator of the differences between vibration characteristics of the true damage parameters and those of the predicted damage parameters. The damage detection of two-dimensional and three-dimensional truss structures is formulated as the test problems. CCGA can correctly identify the damage in the truss structures, although it uses only less than 10% generated solutions that had to be used in the previous works employing genetic algorithm (GA) and micro genetic algorithm (µGA).   
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1.	Introduction 

*The vibration-based damage detection methods, non-destructive methods, are based on the fact that vibration characteristics such as natural frequencies and mode shapes of the structure are changed due to the occurred damage in a structure. Many applications in civil engineer and mechanical engineer (Mottershead et al., 1999; Gawronski and Sawicki, 2000) employed these methods. The residual force concept has received wide attentions with regard to the vibration-based damage detection (Yang and Liu, 2007; Rao et al., 2004; Panigrahi et al., 2009). This concept provides a minimized objective function numerically calculated from the differences between the vibration characteristics of actual damage and those of predicted damage.  Genetic algorithm (GA) (Holland, 1975; Goldberg, 1989) is a derivative-free population-based optimization method of which search mechanisms are based on the Darwinian concept of survival of the fittest. A number of works employed GAs to solve the structural damage detection problems such as (Rao et al., 2004; Guo and Li, 2007; Panigrahi et al., 2009; Nobaharia and Seyedpoorb, 2011). Rao et al. (2004) used a two-point crossover binary coded GA with tournament selection for reproduction of population for the damage detection of truss, frame, and beam structures. A direct concept of the residual force matrix is used to specify an objective function. (Panigrahi et al., 2009) employed GA with the 
                                                 * Corresponding Author.  Email Address: kittipong@buu.ac.th  

concept of the residual force matrix for the damage detection in uniform strength beams. Kim and Lee (2013) proposed micro genetic algorithm (µGA) for the damage detection of two-dimensional and three-dimensional truss structures with elastic supports.  Co-operative co-evolutionary genetic algorithm (CCGA) originally developed by (Potter and De Jong, 1994) is capable for an optimization problem with weak coupling between decision variables. Many researches effectively applied CCGA to the particular optimization problems (Boonlong et al., 2004; Chandra and Zhang, 2012; Ibáñez et al., 2012). In CCGA, a population contains a number of species or sub-populations. An individual in each species represents only a decision variable or part of a solution to the optimization problem. CCGA had been successfully implemented in the damage detection of beams (Boonlong, 2014). This paper will propose CCGA for solving the damage detection problems in truss structures. Two-dimensional and three-dimensional truss models will be considered as the test problems. 
2.	Objective	function	calculation	This section shows how to calculate objective function. The calculation of objective function is adopted from Rao et al. (2004) and Panigrahi et al. (2009). The equations of motion of dynamics of a multi degree freedom system are given by: 
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Where [m] and [k] are (n×n) mass and stiffness matrices, while {x} and {F} are (n×1) displacement and applied force vectors. The jth eigen equation associated with Eq. (1) is given by:  
}0{}]{[}]{[ =− jjj vmvk λ                                   (2) Where λj and {vj} are the eigen value and corresponding unit eigen vector of vibration mode j. In the finite element model of the structure, the matrix [k] can be represented as a sum of the expanded element stiffness matrices of all elements. 
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][][                                   (3) Where [k]i represents the expanded stiffness matrix of an ith element and N is the number of elements. Similarly, the matrix [m] is a sum of element mass matrices. 
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][][                     (4) Once the damage occurs in a structure, stiffness matrix of the damaged structure [kd] can be expressed as a sum of element stiffness matrices multiplied by stiffness factors associated with each of the N elements αi (i = 1, 2, . . . , N), resulting from the damage as the following equation. 
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][][ α                    (5) The values of the parameters fall in the range 0 to 1. The stiffness factor αi = 1 indicates that an undamaged element and αi = 0 or less than 1 implies completely or partially damaged elements respectively. The experimental natural frequencies and unit amplitude vectors or mode shapes of the damaged structure are approximated to satisfy the eigen equation, Eq. (5), of jth mode, therefore the equation can be rewritten as 

}0{}]{[}]{[ =− jdjdjdd vmvk λ                  (6) Where λjd and {vjd} are the approximated experimental eigenvalue and unit eigenvector of jth mode. Moreover, it is assumed that the mass matrix is unchanged due to the damage. If β1, β2, …, βN are decision variables which are the predicted stiffness factors. By substituting the predicted stiffness factors into Eqs. (1) and (2), an expression residual force vector of jth mode in a function of βi	can be evaluated as follows. 
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}{][}]{[}{ βλ                 (7) The residual vector {Rj} will be {0}, only if a correct set of βi, which shows that βi = αi for all i, is introduced under the experimentally damaged modal information λjd and {vjd} for a particular mode 
j. The (n×n) residual force matrix [R] is therefore obtained by 
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If all βi are correct, all elements of the matrix [R] must be zero. The objective function f is then represented by 
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21 ),...,,( βββ                  (9) Where N is the number of elements and n is the number of degrees of freedom.  

3.	 Co‐operative	 co‐evolutionary	 genetic	
algorithm	Co-operative co-evolutionary genetic algorithm (CCGA) explores the search space by utilizing a population which contains a number of species or sub-populations. Each species is independently evolved as the procedure of genetic algorithm. In each species, an individual i represents only a decision variable or part of a solution to a problem. By partitioning the solution into species, the search space that each species has to cover is significantly reduced compared to the full solution searches. The CCGA produces best performances when there is no coupling between different species. However, if there is coupling between species, search performances deteriorate with increasing coupling strength.   

Fig.	1: CCGA procedure of an optimization problem with 4 decision variables.  In CCGA procedure, individuals of an initial population are randomly generated; the chromosome of every individual is then decoded in order to obtain solutions and calculated objective values. The individual having the best objective is assigned to be the current best individual. After that 
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an individual in the initial population is divided into a number of parts in which each part represents for each species. The objective value of an individual in the initial population will be the initial objective value of a corresponding individual in each species. The fitness calculation and parent selection will be performed in order to obtain the resulting sub-population of each species. The initial objective calculation of the CCGA in this paper is quite different from the original initial objective calculation by Potter and De Jong (Potter and De Jong, 1994). It is proposed to reduce computational time. The individuals in each species are independently evolved as the GA procedure. Fig.  1 shows the main procedure of the CCGA of an optimization problem with 4 decision variables, where each species of CCGA represents a decision variable. 
4.	Test	problems	Two truss models - two-dimensional (planar) and three-dimensional (space) truss structures - are used as the test problems. The first truss model (Rao et al., 2004) consists of 11 elements attaching to 6 nodes, and supported by simple supports (Fig. 2). The mechanical properties are modulus of elasticity (E) of 207 GPa, density (ρ) = 7860 kg/m3, cross-sectional area (A) is 0.0011 m2, and length of each bar (l) equals 0.75 m. Two test cases are considered - a) 70% and 30% partially damaged in elements 3 and 6 respectively, and b) completely damaged in an element 10. Therefore the actual stiffness factors αi	for cases (a) and (b) of this model are described by (10) and (11) respectively (Fig. 3). 
α3	= 0.3, α6	= 0.7, and αi	= 1	for other elements   (10) 
α10	= 0.0 and αi	= 1	for other elements           (11)  

 
Fig.	2: A 11-bar two-dimensional truss model (Aanada et al., 2004) 

 
Fig.	3: A 36-bar three-dimensional truss model (Kim and Lee, 2013)  The second model is a space truss consisting of 36 elements and 12 nodes (Fig. 3). It is supported by three simply support ends and elastic foundation on one end as shown in the Fig. 3. Two test cases are a) 40% damaged in element 13 and b) 30% and 50% damaged in elements 1 and 21 respectively. The actual stiffness factors αi	for cases (a) and (b) of the space truss model are as (12) and (13) respectively. The mechanical properties are reserved as with the planar truss model.  
α13	= 0.6, and αi	= 1	for other elements             (12) 
α1	= 0.7, α21	= 0.5, and αi	= 1	for other elements    (13) 
5.	Simulation	results	and	discussions	The parameter settings of CCGA for both truss models are illustrated in Table 1. A solution to each model is encoded by a real-value chromosome. The number of decision variables in the encoded chromosome is directly equal to number of elements of the truss model (N). Each species represents for a decision variable, the number of species is also equal to N. The number of decision variables (N) is then equal to 11 and 36 for the planar truss and space truss models respectively. Table 2 shows the numbers of generated solutions for solution search by CCGA and those from the previous studies. CCGA uses only 8.6% (planar truss) and 7.2% (space truss) generated solutions that had to be used in the previous works.  

Table	1: Parameter settings Parameter Setting and ValuesChromosome coding Real-value chromosome Number of decision variables in a specie 1Number of species Number of decision variables Population size 20Selection method Stochastic universal sampling selection Crossover method Simulated-binary crossover (Deb and Agrawal, 1995) with probability = 1.0Mutation method Variable-wise polynomial mutation (Deb, 1997) with probability = 0.5Number of generations 25 
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Table	2: Number of generated solutions for solution search Planar truss model cases (a) and (b) Space truss model cases (a) and (b) GA (Rao et al., 2004) CCGA µGA (Kim and Lee, 2013). CCGA 64,000 5,500 250,000 18,000  
Table	3: Comparison of predicted stiffness for the planar truss model Element Case (a) Case (b) Actual GA (Rao et al., 2004) CCGA Actual GA (Anada et al., 2004) CCGA1 1.0 0.9974 1.0000 1.0 0.9882 1.00002 1.0 0.9784 1.0000 1.0 0.9941 1.00003 0.3 0.3176 0.2999 1.0 0.9804 1.00004 1.0 1.0000 1.0000 1.0 1.0000 1.00005 1.0 0.9892 1.0000 1.0 0.9941 1.00006 0.7 0.6920 0.7000 1.0 0.9723 1.00007 1.0 0.9970 1.0000 1.0 0.9920 1.00008 1.0 0.9361 1.0000 1.0 0.9991 1.00009 1.0 1.0000 1.0000 1.0 1.0000 1.000010 1.0 0.9853 1.0000 0.0 0.0009 0.000011 1.0 0.9967 1.0000 1.0 1.0000 1.0000 Table 3 shows that the solutions obtained from the CCGA are closer to the actual stiffness factors than those obtained from the standard GA (Rao et al., 2004). It also shows that CCGA can correctly identify the damage occurred in the planar truss. Figs. 4 and 5 plots the predicted stiffness factors obtained from the CCGA versus number of generated solutions for the planar truss cases (a) and (b) respectively. In Figures, the stiffness factors searched by the CCGA are quickly converged to the actual stiffness factors.   

 
Fig.	4: Predicted stiffness factors by CCGA versus number of generated solutions for the planar truss case (a)  

 
Fig.	5: Predicted stiffness factors by CCGA versus number of generated solutions for the planar truss case (b)  

 
Fig.	6: Predicted stiffness factors by CCGA versus number of generated solutions for the space truss case (a)  

 
Fig.	7: Predicted stiffness factors by CCGA versus number of generated solutions for the space truss case (b)  
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Fig.	8: Predicted damage ratio by µGA for the space truss case (a) (Bar graph from Kim and Lee 2013)  

 
Fig.	9: Predicted damage ratio by CCGA for the space truss case (a)  

 
Fig.	10:	Predicted damage ratio by µGA for the space truss case (b) (Bar graph from Kim and Lee 2013)  

 
Fig.	11: Predicted damage ratio by CCGA for the space truss case (b)  For the space truss model, the stiffness factors searched by the CCGA are quickly converged to the actual stiffness factors as shown in Figs. 6 and 7. Figs. 8 – 11 show the bar graphs of predicted damage ratio of each element obtained from the previous 

work and that obtained from CCGA, in which stiffness factor of an element is equal to one minus damage ratio of the element. Figures show that the damage factors searched by CCGA are closer to the actual stiffness factors than those from the previous work (Kim and Lee 2013). 
6.	Conclusion	In this paper, CCGA, which is suitable for an optimization problem with weak coupling between decision variables, is proposed to solve the vibration-based damage detection in two-dimensional and three-dimensional truss structures. A numerical indicator of the differences between vibration characteristics of the true damage parameters and those of the predicted damage parameters is considered as the objective function. Simulation results show that CCGA can correctly identify the damage in both two-dimensional and three-dimensional truss models although it use less generated solutions than that used in the previous works employing GA and µGA. 
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